Dr. Gabriel Abarca Anjarí

Dr. Gabriel Abarca Anjarí

Docente

Licenciado en Química y Título de Químico de la Universidad de Santiago de Chile. Doctor en Química, Universidad de Chile. Ha realizado estadías de investigación en la Universidad de Rennes 1, Rennes, Francia y Universidad Federal de Rio Grande do Sul, Porto Alegre, Brasil. Fue investigador postdoctoral en la Universidad Federal de Rio Grande do Sul, Porto Alegre, Brasil. Actualmente, se desempeña como académico e investigador del CIBQA. Ha participado en proyectos nacionales como Fondecyt (Postdoctorado, Inicio, Regular y Exploración), FONDEF (IDeA I+D, Investigación Tecnológica IDeA), Anillo de Investigación en Ciencia y Tecnología, entre otros. 

INVESTIGACIÓN

Sus líneas de investigación son en el diseño y síntesis de nuevos materiales nanoestructurados, utilizando conceptos de Química Verde, aplicadas en reacciones catalíticas (homogéneas y heterogéneas) con interés en química fina, energía y biomedicina.

PROYECTOS

  • FONDECYT Regular 2023, N° 1230991 (ANID)
  • FONDECYT Proyecto de Exploración 2022, N° 13220074 (ANID)

PUBLICACIONES

  • Copper-based magnetic nanocatalysts for the catalytic transfer hydrogenation of biomass-derived furfural, G.  Valdebenito,  I.  Moglia,  C.  Morales-Verdejo,  P.  Aguirre,  J.  Alves Fernandes. Applied Surface Science 689 (2025) 162566.https://doi.org/10.1016/j.apsusc.2025.162566
  • Easy formation of AuPt nanoalloys on chitosan films and their synergistic effects in the catalyzed reduction of p-nitrophenol and hydrolysis of ammonia-borane. O. Ramírez, G. Abarca, N. Mejías, Á. Leiva, C. Saldías, D. Díaz Díaz. Journal of Environmental Chemical Engineering 13 (2025) 115714.https://doi.org/10.1016/j.jece.2025.115714
  • High content Fe(III) electrocatalyst for the oxygen reduction and evolution reactions. C.Z. Loyola, A. Zitolo, N. Troncoso, J. Carrasco, S. Choque,, J.H. Zagal, W. Orellana, F. Tasca. International Journal of Hydrogen Energy 101 (2025) 605–616. https://doi.org/10.1016/j.ijhydene.2024.12.385
  • Tuning C-N Ullmann coupling with anion-exchanged ionic liquid-functionalized nanoparticle catalysts.J. Gaete, G. Valdebenito, C. Valdebenito, C. Morales-Verdejo,  P. Aguirre. Journal of Molecular Liquids 403 (2024) 124782.https://doi.org/10.1016/j.molliq.2024.124782
  • Evaluation of Mono and Bimetallic Ferrocene-Based 1,2,3-Triazolyl Compounds as Burning Rate Catalysts for Solid Rocket Motor. C. Valdebenito, J. Gaete, C. Osorio, Y. Dibdalli, A. Norambuena, N. Lecaros, C. Carrasco, H. Reyes, G. Abarca, C. Morales-Verdejo. ACS Omega 2023, 8, 35242−35255. https://doi.org/10.1021/acsomega.3c04996
  • Hydrogenation of biomass derivate catalysed by ruthenium (II) complexes containing phosphorus-nitrogen ligands under mild conditions. G. Valdebenito, S. Parra-Melipan, C.F. Dinamarca, V. Lopez, A. Vega, G. Abarca, P. Aguirre.Molecular Catalysis 542 (2023) 113075.https://doi.org/10.1016/j.mcat.2023.113075
  • Superparamagnetic energetic nanoparticles: a surface self-propagation pathway for the thermal decomposition of ammonium perchlorate. J. Gaete, C. Valdebenito, Y. Dibdalli, J.L. Arroyo, A. Norambuena, F. Valenzuela, C. Journal of Thermal Analysis and Calorimetry (2023) 148:2313. https://doi.org/10.1007/s10973-022-11885-5
  • Porous chitosanbased nanocomposites containing gold nanoparticles. Increasing the catalytic performance through film porosity.S. Bonardd, O. Ramírez, G. Abarca, A. Leiva, C. Saldías, D. Díaz. International Journal of Biological Macromolecules 217 (2022) 864–877.https://doi.org/10.1016/j.ijbiomac.2022.07.197
  • Bimetallic ruthenium compound derived from 6, 12-dihydroindeno [1, 2-b] fluorene ligand as burning rate catalyst for solid rocket motor propellant. Y. Dibdalli, J. Gaete, C. Valdebenito, J.L. Arroyo, I. Martínez, G. Abarca, C. Morales-Verdejo. Journal of Organometallic Chemistry 973–974 (2022) 122408. https://doi.org/10.1016/j.jorganchem.2022.122408
  • Triazolium-based Ionic Liquids Supported on Alumina as Catalysts to Produce 5-HMF from Fructose.C. Araya-López, J. Conejeros, C. Valdebenito, R. Cabezas, G. Merlet, J.F. Marco, G. Abarca, R. Salazar, J. Romero. ChemCatChem 2022, 14, e202200046. doi.org/10.1002/cctc.202200046
  • Catalytic Effects of Ruthenocene Bimetallic Compounds Derived from Fused Aromatic Ring Ligands on the Main Oxidizing Agent for Solid Rocket Motor.Y. Dibdalli, J. Gaete, C. Osorio-Gutierrez, J.L. Arroyo, A. Norambuena, M. Amshumali, G. Abarca, C. Morales-Verdejo.J. Braz. Chem. Soc. 33 (05) • 2022 • https://doi.org/10.21577/0103-5053.20210168
  • Mechanistic Insights into the Thermal Decomposition of Ammonium Perchlorate: The Role of Amino-Functionalized Magnetic Nanoparticles.J. Gaete, J.L. Arroyo, A. Norambuena, G. Abarca, C. Morales-Verdejo. Inorg. Chem. 2022, 61, 1447−1455. https://doi.org/10.1021/acs.inorgchem.1c03121
  • Heterobimetallic Catalysts for the Thermal Decomposition of Ammonium Perchlorate: Efficient Burning Rate Catalysts for Solid Rocket Motors and Missiles. J.L. Arroyo, A. Norambuena, H. Reyes, C. Valdebenito, G. Abarca, D. MacLeod-Carey, C. Morales-Verdejo. Inorg. Chem. 2021, 60, 1436−144. https://dx.doi.org/10.1021/acs.inorgchem.0c02639
  • Insights into the electronic structure of Fe penta-coordinated complexes. Spectroscopic examination and electrochemical analysis for the oxygen reduction and oxygen evolution reactions.C. Zúñiga-Loyola, G. Abarca, S. Ureta-Zañartu, C. Aliaga, J.H. Zagal, M.T. Sougrati, F. Jaouen, W. Orellana, F. Tasca.J. Mater. Chem. A, 2021, 9, 23802. DOI: 10.1039/d1ta05991b
  • Oxygen reduction reaction at 68-atoms gold cluster supported on carbon nanotubes: Theoretical and experimental analysis.C. Zúñiga-Loyola, A. Gatica, J. Govan, G. Abarca, W. Orellana, F. Tasca.Mater. Chem. Front., 2021, 5, 7529. DOI: 10.1039/d1qm00918d
  • Bimetallic RuPd nanoparticles in ionic liquids: selective catalysts for the hydrogenation of aromatic compounds.G. Abarca, W.D.G. Goncalves, B.L. Albuquerque, J. Dupont, M.H.G. Prechtl, J.D. New J. Chem., 2021, 45, 98-103. DOI: 10.1039/D0NJ02674C
  • Highly modulated supported triazolium-based ionic liquids: direct control of the electronic environment on Cu nanoparticles.C. Valdebenito, J. Pinto, M. Nazarkovsky, G. Chacón, O. Martínez-Ferraté, K. Nanoscale Adv., 2020, 2, 1325-1332. DOI: 10.1039/D0NA00055H
  • Data of interaction of supported ionic liquids phases onto copper nanoparticles: A density functional theory study.K. Wrighton-Araneda, C. Valdebenito, G. Abarca, D. Cortés-Arriagada. Data in Brief 33 (2020) 106562.https://doi.org/10.1016/j.dib.2020.106562
  • Influence of cyano substituents on the electron density and catalytic activity towards the oxygen reduction reaction for iron phthalocyanine. The case for Fe(II) 2,3,9,10,16,17,23,24-octa(cyano)phthalocyanine.J. Govan, G. Abarca, C. Aliaga, B. Sanhueza, W. Orellana, G. Cárdenas-Jirón, J.H.Electrochemistry Communications 118 (2020) 106784.https://doi.org/10.1016/j.elecom.2020.106784
  • Interaction of supported ionic liquids phases onto copper nanoparticles: A DFT study.K. Wrighton-Araneda, C. Valdebenito, M.B. Camarada, G. Abarca, D. CortésArriagada. Journal of Molecular Liquids 310 (2020) 113089. https://doi.org/10.1016/j.molliq.2020.113089
  • Influence iron-iron distance on the thermal decomposition of ammonium perchlorate. New catalysts for the highly efficient combustion of solid rocket propellant. J.L Arroyo., P. Povea, R. Faúndez, M.B. Camarada, C. Cerda-Cavieres, G. Abarca, J.M. Manríquez, C. Morales-Verdejo./ Journal of Organometallic Chemistry 905 (2020) 121020. https://doi.org/10.1016/j.jorganchem.2019.121020
  • Nanohybrids of reduced graphene oxide and cobalt hydroxide (Co(OH) 2 |rGO) for the thermal decomposition of ammonium perchlorate.G. Abarca, P.L. Ríos, P. Povea, C. Cerda-Cavieres, C. Morales-Verdejo, J.L. Arroyo. RSC Adv., 2020, 10, 23165. DOI: 10.1039/d0ra02853c

PATENTES

  • Descomposición térmica del perclorato de amonio utilizando como catalizadores nanopartículas magnéticas funcionalizadas con derivados de amina.José Gaete, Gabriel Abarca, César Morales.PCT/CL2022/050136 (WO 2023/122847)
  • Material de silicona funcionalizada con nanopartículas de cobre que reduce la carga bacteriana y la formación de biopelícula.María Cristina Paredes, David Montero, Alejandro Escobar, Gabriel Abarca. PCT/CL2022/050126 (WO 2023/122846)

CAPÍTULOS DE LIBRO

  • Nanoengineering Materials for Biomedical Uses. R.A Zamora, C. Gutiérrez-Cerón, J.A. Fernandes, G. Abarca. Nanoengineering Materials for Biomedical Uses. Springer, Cham. https://doi.org/10.1007/978-3-030-31261-9_3

Contáctanos

¿Tienes dudas o consultas?